Convex Multi-view Subspace Learning
نویسندگان
چکیده
Subspace learning seeks a low dimensional representation of data that enables accurate reconstruction. However, in many applications, data is obtained from multiple sources rather than a single source (e.g. an object might be viewed by cameras at different angles, or a document might consist of text and images). The conditional independence of separate sources imposes constraints on their shared latent representation, which, if respected, can improve the quality of a learned low dimensional representation. In this paper, we present a convex formulation of multi-view subspace learning that enforces conditional independence while reducing dimensionality. For this formulation, we develop an efficient algorithm that recovers an optimal data reconstruction by exploiting an implicit convex regularizer, then recovers the corresponding latent representation and reconstruction model, jointly and optimally. Experiments illustrate that the proposed method produces high quality results.
منابع مشابه
Convex Subspace Representation Learning from Multi-View Data
Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...
متن کاملRegularized factor models
This dissertation explores regularized factor models as a simple unification of machine learning problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized factorizations and (2) new unifications that facilitate application of these algorithms to problems previously ...
متن کاملRegularized factor models by Martha White
This dissertation explores regularized factor models as a simple unification of machine learning problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized factorizations and (2) new unifications that facilitate application of these algorithms to problems previously ...
متن کاملConvex Multiview Fisher Discriminant Analysis
CCA can be seen as a multiview extension of PCA, in which information from two sources is used for learning by finding a subspace in which the two views are most correlated. However PCA, and by extension CCA, does not use label information. Fisher Discriminant Analysis uses label information to find informative projections, which can be more informative in supervised learning settings. We deriv...
متن کاملShared Subspace Learning for Latent Representation of Multi-View Data
The pervasive existence of multi-view data has made conventional single view data analysis methods to confront with great challenge. To exploit new analysis technique for multi-view data has become one of active topics in the field of machine learning. From the point of shared subspace learning, this paper focuses on capturing the shared latent representation across multi-view by constructing t...
متن کامل